Journal of Sound and Vibration (1999) 222(4), 691-695
Article No. jsvi.1998.2017, available online at http://www.idealibrary.com on IDEPL

ANALYSIS OF VIBRATING RECTANGULAR ANISOTROPIC PLATES WITH FREE-EDGE HOLES

D. R. Avalos, H. A. Larrondo

Departamento de Física, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, 7600 Mar del Plata, Argentina

AND
P. A. A. Laura

Instituto de Mecánica Aplicada (IMA-CONICET) and Departamento de Ingeniería, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
(Received 23 September 1998, and in final form 2 November 1998)

1. INTRODUCTION

The structural designer is frequently confronted with the need of providing convenient passage for utility ducts through openings in slabs and beams. This situation leads to a more complicated response from a structural dynamics viewpoint.

A very thorough study has been performed by Abdalla and Kennedy in the case of prestressed concrete beams [1]. The determination of the fundamental frequency of transverse vibration of simply supported isotropic and orthotropic rectangular plates with rectangular and circular holes has been tackled by the authors using analytical and numerical techniques [2-4].

The present study is concerned with the determination of the first four frequency coefficients in the case of fully anisotropic rectangular plates with equal aspect ratio rectangular holes (Figure 1) using an analytical approach whereby the displacement amplitude is expressed in terms of beam functions. This means using a truncated double Fourier series which is the exact solution of the vibrating, solid rectangular plate simply supported at its four edges. The frequency determinant is generated using the Rayleigh-Ritz method.

2. ANALYTICAL SOLUTION

Following previous studies and using Lekhnitskii's well established notation [5], one expresses the governing functional in the form

$$
\begin{equation*}
J[W]=U-T, \tag{1}
\end{equation*}
$$

where U and T are the potential and kinetic energies, given respectively by

$$
\begin{align*}
U & =\frac{1}{2} \int_{A_{p}}\left[D_{11} W_{x x}^{2}+2 D_{12} W_{x x} W_{y y}+D_{22} W_{y y}^{2}+4 D_{66} W_{x y}^{2}\right. \tag{2}\\
& \left.+4\left(D_{16} W_{x x}+D_{26} W_{y y}\right) W_{x y}\right] \mathrm{d} x \mathrm{~d} y
\end{align*}
$$

Figure 1. Vibrating system under consideration.
and

$$
\begin{equation*}
T=\frac{1}{2} \int_{A_{p}} \rho h \omega^{2} W^{2} \mathrm{~d} x \mathrm{~d} y \tag{3}
\end{equation*}
$$

where A_{p} is the plate area excluding the hole. That is to say, the energy functional in expression (1) is integrated over the physical doubly connected domain and so it is the difference between the virgin structural element and the hole energy functionals.

The displacement amplitude is now approximated using beam functions, given by the expression

$$
\begin{equation*}
W(x, y) \cong W_{a}(x, y)=\sum_{n=1}^{N} \sum_{m=1}^{M} A_{n m} \sin (n x / a) \sin (m x / b), \tag{4}
\end{equation*}
$$

where each co-ordinate function $[\sin (n x / a) \sin (m x / b)]$ constitutes the exact eigenfunction in the case of an orthotropic, simply supported rectangular plate simply connected, and clearly, does not satisfy the governing, natural boundary conditions at the cutout. However, the procedure is a legitimate one when employing the Rayleigh-Ritz method: the vibrating beam functions constitute a complete set of trial functions and the minimization process of the functional (1) guarantees that, as the number of co-ordinate functions used approaches infinity, the generalized force type boundary conditions and the governing partial differential equation of motion will be exactly satisfied.

Substituting the approximating function (4) into equation (1) and minimizing $J[W]$ with respect to the $A_{n m}$'s results in a homogeneus, linear system of
equations in the $A_{n m}$'s. The non-triviality condition yields a secular determinant whose roots constitute the frequency coeffcients $\Omega_{i}=\sqrt{\rho h / D_{11}} \omega_{i} a^{2}$.

3. NUMERICAL RESULTS

The first four frequency coefficients $\Omega_{i}=\sqrt{\rho h / D_{11}} \omega_{i} a^{2}$ have been determined for simply supported anisotropic rectangular plates of uniform thickness, with equal aspect ratio cutouts placed in different positions, and for $D_{12} / D_{11}=0 \cdot 5, D_{22} / D_{11}=0 \cdot 5, D_{66} / D_{11}=0 \cdot 5, D_{16} / D_{11}=1 / 3, D_{26} / D_{11}=1 / 3$.

Tables $1-3$ depict values of Ω_{i} for $b / a=2 / 3,1$ and $3 / 2$, respectively, when the cutout takes three positions. The analytical determinations have been made with $M=N=20$ and 30 . Good rate of convergence was observed when increasing N and M.

4. CONCLUSIONS

As a general conclusion one may say that the fact that the use of a double Fourier series yields results, which seem to be very accurate as the size of the determinantal equation is enlarged, is quite interesting from an academic

Table 1
Frequency coefficients $\Omega_{i}(i=1,2,3,4)$ determined in the case of a simply supported rectangular anisotropic plate $\left(D_{12} / D_{11}=0 \cdot 5, D_{22} / D_{11}=0 \cdot 5, D_{66} / D_{11}=0 \cdot 5, D_{16} / D_{11}=1 / 3\right.$, $\left.D_{26} / D_{11}=1 / 3\right)$ with a rectangular hole with free edge in the case $b / a=2 / 3$ (see Figure 1)

a_{1} / a	x_{1} / a	y_{1} / b	Number of terms	Ω_{1}	Ω_{2}	Ω_{3}	Ω_{4}
$0 \cdot 10$	1/4	$1 / 4$	400	$29 \cdot 00$	57.89	78.82	$98 \cdot 16$
			900	28.89	57.74	78.32	97.97
	1/4	1/2	400	28.90	57.55	$79 \cdot 41$	98.06
			900	28.76	57.27	$79 \cdot 18$	97.79
	1/2	1/2	400	28.74	57.96	79.66	$97 \cdot 42$
			900	28.55	57.82	79.39	97.09
$0 \cdot 15$	1/4	1/4	400	28.86	57.73	78.22	97.98
			900	28.73	57.57	77.78	97.75
	$1 / 4$	1/2	400	28.65	57.28	78.72	$97 \cdot 60$
			900	28.51	57.03	78.36	97.28
	1/2	1/2	400	28.35	57.73	$78 \cdot 68$	97.09
			900	$28 \cdot 17$	$57 \cdot 54$	78.07	$96 \cdot 82$
$0 \cdot 20$	$1 / 4$	1/4	400	28.65	57.49	78.47	97.58
			900	$28 \cdot 50$	57.33	78.04	$97 \cdot 30$
	$1 / 4$	1/2	400	28.44	$57 \cdot 50$	77.32	96.81
			900	28.29	$57 \cdot 26$	76.84	96.44
	1/2	1/2	400	$28 \cdot 17$	$57 \cdot 16$	75.87	97.25
			900	$27 \cdot 98$	56.92	$75 \cdot 03$	97.00

Table 2
Idem Table 1, for $b / a=1$ (see Figure 1)

a_{1} / a	x_{1} / a	y_{1} / b	Number of terms	Ω_{1}	Ω_{2}	Ω_{3}	Ω_{4}
$0 \cdot 10$	1/4	$1 / 4$	400	$19 \cdot 38$	39.20	51.75	65.61
			900	$19 \cdot 31$	$39 \cdot 10$	$51 \cdot 42$	$65 \cdot 48$
	1/4	1/2	400	$19 \cdot 32$	39.05	$51 \cdot 69$	65.59
			900	$19 \cdot 22$	38.94	51.42	65.43
	1/2	1/2	400	$19 \cdot 23$	$39 \cdot 26$	52.26	65.28
			900	$19 \cdot 10$	$39 \cdot 16$	52.09	$65 \cdot 06$
$0 \cdot 15$	$1 / 4$	$1 / 4$	400	$19 \cdot 30$	39.08	51.41	65.44
			900	$19 \cdot 21$	38.97	$51 \cdot 13$	$65 \cdot 30$
	1/4	1/2	400	$19 \cdot 15$	38.78	$51 \cdot 19$	$65 \cdot 25$
			900	$19 \cdot 05$	38.65	50.95	$65 \cdot 08$
	1/2	1/2	400	18.99	$39 \cdot 10$	51.67	$65 \cdot 15$
			900	18.88	38.98	$51 \cdot 28$	$64 \cdot 98$
$0 \cdot 20$	$1 / 4$	$1 / 4$	400	$19 \cdot 15$	$38 \cdot 86$	$51 \cdot 61$	$65 \cdot 16$
			900	$19 \cdot 06$	38.75	$51 \cdot 34$	64.98
	1/4	1/2	400	18.97	38.41	$51 \cdot 12$	$64 \cdot 68$
			900	18.87	38.25	$50 \cdot 88$	$64 \cdot 48$
	1/2	1/2	400	18.90	38.72	$49 \cdot 94$	$65 \cdot 35$
			900	$18 \cdot 78$	$38 \cdot 56$	$49 \cdot 42$	$65 \cdot 18$

Table 3
Idem Table 1, for b/a=3/2 (see Figure 1)

		Number of a_{1} / a					
x_{1} / a	y_{1} / a	terms	Ω_{1}	Ω_{2}	Ω_{3}	Ω_{4}	
	$1 / 4$	$1 / 4$	400	$14 \cdot 47$	$25 \cdot 02$	$39 \cdot 43$	$44 \cdot 09$
$0 \cdot 10$	$1 / 4$	$1 / 2$	900	$14 \cdot 42$	$24 \cdot 92$	$39 \cdot 33$	$43 \cdot 88$
			400	$14 \cdot 41$	$24 \cdot 94$	$39 \cdot 45$	$43 \cdot 86$
	$1 / 2$	$1 / 2$	400	$14 \cdot 34$	$24 \cdot 88$	$39 \cdot 29$	$43 \cdot 65$
			900	$14 \cdot 30$	$25 \cdot 07$	$39 \cdot 40$	$44 \cdot 63$
	$1 / 4$	$1 / 4$	400	$14 \cdot 21$	$25 \cdot 01$	$39 \cdot 23$	$44 \cdot 47$
			900	$14 \cdot 36$	$24 \cdot 91$	$39 \cdot 17$	$43 \cdot 72$
$0 \cdot 15$	$1 / 4$	$1 / 2$	400	$14 \cdot 22$	$24 \cdot 78$	$39 \cdot 06$	$43 \cdot 55$
			900	$14 \cdot 13$	$24 \cdot 67$	$39 \cdot 24$	$43 \cdot 31$
	$1 / 2$	$1 / 2$	400	$14 \cdot 02$	$25 \cdot 01$	$39 \cdot 46$	$43 \cdot 13$
			900	$13 \cdot 93$	$24 \cdot 93$	$39 \cdot 32$	$43 \cdot 83$
	$1 / 4$	$1 / 4$	400	$14 \cdot 19$	$24 \cdot 72$	$38 \cdot 82$	$43 \cdot 82$
$0 \cdot 20$	$1 / 4$	$1 / 2$	900	$14 \cdot 12$	$24 \cdot 59$	$38 \cdot 69$	$43 \cdot 66$
			400	$13 \cdot 96$	$24 \cdot 47$	$38 \cdot 95$	$43 \cdot 24$
	$1 / 2$	$1 / 2$	900	$13 \cdot 87$	$24 \cdot 36$	$38 \cdot 79$	$43 \cdot 05$
		400	$13 \cdot 84$	$24 \cdot 88$	$39 \cdot 94$	$41 \cdot 29$	
		900	$13 \cdot 75$	$24 \cdot 77$	$39 \cdot 82$	$40 \cdot 63$	

viewpoint considering the fact that, individually, each co-ordinate function does not satisfy the boundary conditions at the edge of the hole. However, as the size of the determinant approaches infinity, the natural boundary conditions at the hole edges tend to be satisfied. The mathematical model is quite realistic, within the realm of the classical theory of vibrating plates.

In the case of a plate with clamped edges one can follow the useful approach developed in reference [6].

ACKNOWLEDGMENTS

The present study has been sponsored by CONICET and by Secretaría General de Ciencia y Técnica (Universidad Nacional del Sur, Universidad Nacional de Mar del Plata).

REFERENCES

1. H. Abdalla and J. B. Kennedy 1995 Journal of Structural Engineering 121, 1058-1068. Dynamic analysis of prestressed concrete beams with openings.
2. P. A. A. Laura, E. Romanelli and A. Rossi 1997 Journal of Sound and Vibration 202, 275-283. Transverse vibrations of simply supported rectangular plates with rectangular cutouts.
3. D. R. Avalos, H. A. Larrondo, P. A. A. Laura and R. E. Ross 1997 Journal of Sound and Vibration 202, 585-592. Transverse vibrations of simply supported rectangular plates with rectangular cutouts.
4. P. A. A. Laura, R.E. Rossi, D. R. Avalos and H. A. Larrondo 1998 Journal of Sound and Vibration 212, 753-757. Transverse vibrations of a simply supported rectangular orthotropic plate with a circular perforation with a free edge.
5. S. G. Lekhnitskkii 1968 Anisotropic Plates New York: Gordon and Breach Science Publishers
6. U. Kristiansen and W. Soedel 1971 Journal of Engineering for Industry (ASME) 93, 343-345. Fundamental frequencies of cutout square plates with clamped edges.
